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ABSTRACT

Over the past few decades, many techniques have been deveioped for the
numerical solution of integral equations representing electromagnetic scattering
problems. However, a majority of these techniques are limited to electrically
small scatterers, i.e., below the resonance range. This is primarily
because the amount of CPU computer time and storage requirements become pro-
hibitive for large body scatterers. Recent work indicates that a procedure
based on the iterative conjugate gradient method can be incorporated into con-
ventional numerical methods in order to extend the range of application of the
techniques to larger geometries. In this paper we discuss the conjugate gra-
dient method and illustrate several ways in which it can be applied to electro-
magnetic scattering problems. The discussion includes mention of the advantages
of the method as compared to conventional approaches as well as some of its
limitations. 1In many practical scattering problems of interest at optical wave-
lengths, the method can provide a convenient means of treating problems which are

electrically more than an order of magnitude larger than can be handled by other

techniques.
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1. INTRODUCTION

The numerical solution of integral equations is an invaluable technique for
the treatment of electromagnetic scattering problems. Asymptotic techniques,
such as the Geometric Theory of Diffraction (GTD) and its extensions [l], have
also been employed for solving high-frequency scattering problems. However,
this method is not well-suited for dealing with scatterers that cannot be con-
veniently described in terms of a limited number of canonical geometries for
which analytical diffraction coefficients are available. Furthermore, the GTD
is not very useful for determining the near—field behavior and cannot be applied
to many practical problems dealing with inhomogeneous or lossy scatterers. An
additional difficulty with this type of asymptotic approach is that it may be
impossible to estimate the accuracy of numerical results based on such tech-
niques. Integral equations, on the other hand, can be formulated for scatterers
of arbitrary shape [2], [3], [4]. Although gew integral equations can be solved
exactly, numerical solutions are readily obtained by a systematic application of
techniques such as the method of moments (MoM) [3] - [6]. However, in the past,
the application of this approach has been limited to bodies that are electri-
cally small. The reason for this limitation will be evident from the discussion
below.

The moment-method procedure involves replacing the unknown in the integral
equation by N basis functions and reduces the problem to the solution of an
N-th order matrix equation. In most problems, the unknown density needed fo:
accuracy is at least ten per linear wavelength. Thus, computer time and
memory requirements place an upper limit on the size of the body to be analyzed.

This {s especially true at optical wavelengths where the size of the scatterer

is often comparable to or larger than the wavelength of the illumination source.
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Current research in computational electromagnetics includes efforts to develop
more efficlent algorithms for the solution of integral equations, thereby per-
mitting the analysis of electrically larger and more complex geometries.
Because of their potential for efficiency and low storage requirements, itera-
tive methods are often incorporated into these algorithms [7].

In this paper, we review one such iterative technique, viz., the method of
conjugate gradients [8], which has been found useful for the solution of large
body scattering problems. Although this technique Qas introduced by Hestenes
and Stiefel more than thirty years ago for the iterative solution of matrix
equations, it has only recently been applied extensively to electromagnetic
scattering problems [9] - [19]. Recent work has clarified the advantages and
the limitations of the method and has shown that the conjugate gradient method
can, in many cases, be used to solve practical problems which cannot :sily »ve
treated by the conventional, direct solution of matrix equations.

The following section presents the conjugate gradient algorithm and iden-
tifies important features of the method. The remainder of the article presents

examples to illustrate a number of different ways in which the method can be

applied in practice.
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2. THE CONJUGATE GRADIENT METHOD
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Hestenes and Stiefel introduced the conjugate gradient method in 1952 [8].

Ay,

Since then, it has received much use in engineering and applied mathematics

[20] - [23]). Although the method can be applied to a quadratic functional on a ‘
g! general Hilbert space H, for our purposes it is sufficient to consider specifi- )
ri, cally Euclidean space EN. For this space, the inner product and norm are )

defined in the usual manner:

f’ KE,g> = g*f (1)

7))
L o Mg = (£,82) (2)

The asterisk in Equation (1) denotes the transpose-conjugate matrix.

~—res
« "

We wish to solve the linear system

LJ = E (3)

2

where E is a known N-dimensional vector, J is an unknown N-dimensional vector,

and L is a nonsingular N x N matrix. Let {Pi} be a set of N linearly indepen-

e
i

dent vectors in EN. The unknown vector J can be represented as

J = aP) + @By + oo ¥ aPy (4)

If the P-vectors are constrained to satisfy the orthogonality requirement

-

L <t e, P> =0 1%] (5)
E: where LA is the adjoint of L (the transpose-conjugate matrix), the coefficients
L
in Equation (4) are given by
T <E,LP_>
e n
a, = — (6)
l-:_ 'lLPn'l
e
!
} . The approach embodied in Equations (4) - (6) is known as the conjugate direction
|
I method [8]. Note that in the literature, this procedure {3 often presented for
" the special case where L 1s a symmetric and positive definite matrix. We make
i A
i ! ]
e 1
_ L
) a .;\.l " .A_.Lt‘.:l\':‘:l-\. L .;;:L.:A;_..'.‘
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no such restriction, and as a result the formulas presented here differ somewhat
from those found, for instance, in [20].
The conjugate gradient method is a conjugate direction method which is

augmented with a recursive procedure for generating the P-vectors according to

=3
N
S
o]
RE
2h
o

q
1
o

(5). The P-vectors generated by the gradient algorithm, are, in fact,

designed to represent the solution corresponding to a specific right-hand side E ;E
in (3). As a result, the solutions of most equations can be adequately repre- :5
sented by far less than the full set of ﬁ vectors [23]. This is an attractive ?j
feature of the conjugate gradient method over most other iterative techniques, ii
providing that one is dealing with a single incident field. ;;

The algorithm requires the user to provide Jo, an initial estimate of the
unknown J. Normally, for well-conditioned systems, the choice of J0 has iittle
effect on the number of iterations required for a solution, and a zero estiuate
is often used. However, it is important to note that the fiexiblility of
accepting an initial estimate permits the user to terminate the iteration and
start anew, using the current estimate of the solution as the initial estimate.
This feature may be important when dealing with large-order equations in order
to combat the round-off errors inevitably introduced due to the finite word-
length of a computer.

A common form of the complete algorithm is given as follows [24] - [26]:

Initial steps

R, = LI, ~E (7)
P, = -LARO (8)

Iterative steps k = 1,2,...

St Lt . . PR - T O
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(9)
2 2
| LRy | | | L, i
T = Jg-1 + H Py (10)
Ry = LJ, ~E=R_, + aLP (11)
Lt |12
B * ———3 (12)
AR 1]
Prer * BBy LARk (13)
The residual norm
DR 1Ly — Ef i~
[IET] TETT

decreases monotonically as the algorithm progresses and is useful as an indica-

tion of the average error in the solution after k steps. The algorithm is

usually terminated when the residual norm decreases to some prescribed value.
The conjugate gradient algorithm can be derived by considering the minimi-

zation of the quadratic functional [24], [25]
F(I) = |[R |12 (15)
Kk IR 1)

Specifically, the P-functions are found by reducing the gradients of F at each
estimate of J to an orthogonal set satisfying Equation (5). A set of such func-
tions 1s sald to be conjugate with respect to the operator LAL, hence, the name
"conjugate gradients.,”

In theory, the solution to an N-dimensional system will be found in at most
N iterations. Even if no unique solution exists, the algorithm will converge in

theory to the "minimum-norm” solution [22].
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Based upon our own observations, a numerical solution accurate to several

digits is found in N/3 iterations or less for most well-conditioned systems.

The residual norm given by (14) would, for instance, quickly decrease from its
initial value to something less than 1 x 10—4. For poorly conditioned systems,
the convergence is naturally slower and is exacerbated by round-off errors in
an& calculation involving the operator [22], [23]. Under these conditions, it
is not uncommon for the residual norm to remain relatively constant for many
iterations or even to grow under the iﬁfluence of round-off errors. This situ~
ation arises occasionally in practice, and under such circumstances the algo-
rithm may not converge. This is true in spite of the fact that, theoretically,
the convergence of the gradient method is guaranteed in the absence of any
machine error. There are numerous variations on the conjugate gradient method
as it is presented here, some of which involve less computation and may be freer
from the round-off problem [23]. This topic is currently under investigation by
the authors.

It is often necessary in practice to analyze a single scatterer for many
different sources of illumination. Equivalently, it is desirable to have an
efficient means for solving Equation (3) for many different right—hand sides E.
If Gaussian elimination is used to generate the inverse of a large matrix, any
number of right-hand sides can be treated at an almost negligible additional
cost. In theory, the conjugate gradient method could be adapted to test many
sources efficiently by simultaneously expanding each solution in terms of the
single set {Pi}‘ Unfortunately, complications arise which usually prevent this
from being practical. As mentioned earlier, the P-vectors generated for a given
E are specifically geared to represent one solution., For instance, in a case
where the solution exhibited even-symmetry, all of the P-vectors generated to

represent the solution were even-symmetric. Our experiences indicate that,

7
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except in special cases, the entire set {Pil’ where the upper limit of {1 could
be on the order of N for an N x N matrix, will be needed to treat several right- f?ﬁ
hand sides at one time. Because the conjugate gradient method uses a recursive ;{?

algorithm to generate these functions, round-off errors progressively degrade

their actual orthogonality. In practice, the severity of the round-off errors )
prevents the successful generation of the necessary vectors. For this reason, it :
appears that a nonrecursive algorithm for generating the P-vectors would be a _hi
better candidate for the treatment of multiple right-hand sides. Any practical ?%%
method for treating large~order systems would do so without the need to store fj
the P-vectors in computer memory. At this time, no approach satisfying these ,:;
constraints is known to the authors, although they are currently experimenting
with some algorithms that might be suitable for this purpose. Of course, until
such a scheme is available, the conjugate gradient method may still be used to
treat each right-hand side independently. i5ﬂ

Certain integral equations suffer from "resonances” which occur when the Q;

equation permits homogeneous solutions, such as at frequencies where a scatterer

is also a resonant cavity [27] - [29]. When this occurs, the operator is ill- ;?3
conditioned, and the numerical solution i3 corrupted by the presence of the liig
h;mogeneous solution and by round-off errors in the solution process. The con- ﬁﬁ%
jugate gradient method can be useful as a flag to identify this situatiom, as E?i
the convergence of the method is significantly slower when the operator is EE}S
poorly conditioned [23]. Methods for circumventing the difficulties arising in ;L%
the "resonance” situation have been discussed elsewhere [27] - [29]. .iri

The above discussion is a brief introduction to the conjugate gradient lffg
method. Readers desiring additional information are encouraged to consult géi

references (8], (10}, [11], (20] - [26]. 1In the following section, several s
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scattering problems are presented as examples to illustrate the application of W

the method. oy
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3. APPLICATIONS

The conjugate gradient algorithm can be applied directly to any discrete
operator equation. The first step in a solution process is to select a
discretization scheme and apply it to the integral equation. The method of
moments 1s a general technique for converting continuous equations to matrix
equations [5], and is used extensively in computational electromagnetics.
However, the moment-method matrix equation for large-body scattering problems
often exceeds the limits of computer memory and iterative methods which do not
require the N x N matrix to be stored offer advantages. The first example to
féllow illustrates the conjugate gradient solution of a matrix equation with
emphasis on minimal storage requirements.

Since the integral equations of interest are often convolutional in form,
the Fast Fourier Traunsform (FFT) algorithm can in many cases be adapted to per-
form the convolution. Equations writtem as circular (periodic) or linear con-
volutions can be solved exactly using the FFT, and at a considerable savings
over the comparable matrix multiplication. Examples of these situations are
given below.

An alternate approach is to use the FFT as an approximation to the con-
tinuous Fourier transform, in order to compute convolution integrals which can-
not be easily put into the form of discrete convolutions. This procedure is
also discussed below.

Although these techniques can be applied to any size problem, we are pri-
marily interested in geometries which are electrically too large to handle with
conventional matrix methods. Comparisons between the execution times of the

iterative methods and conventional matrix methods have been presented for small

10
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geometries [15], [18]. To our knowledge, no systematic comparison has been
published for large-order equations.

3.1. Solution of Matrix Equations

If the conjugate gradient algorithm is terminated after several digits of
accuracy are obtained in the solution, it is often comparable to, and sometimes
better in efficiency than, the Gaussian elimination solution of a single matrix
equation [26]. In the elimination process, the N x N matrix is altered and must
be stored in computer memory or in an out-of-core peripheral unit. This places
an upper limit on the size of a scatterer which can be easily treated by matrix
methods. The conjugate gradient method can be used to extend this limit, pro-
vided that the matrix elements are sufficiently redundant or can be generated
from a relatively simple function subroutine. Each matrix element is needed
twice per iteration; therefore, this approach will only be practical for large
systems if the elements can be generated efficiently.

Several examples which were developed for conventional matrix solution and
are well-suited for the iterative scheme include two-dimensional dielectric

scatterers [30], [31], two-dimensional perfectly conducting scatterers [32], and

three~dimensional dielectric bodies [33]. All of these are based on moment- }f

method formulations using so-called pulse basis functions and point-matching, "

.

and all the matrix elements are closed-form expressions. For illustration, con- }j

sider TM wave scattering by perfectly conducting two-dimensional cylinders, such 2

X

as discussed by Harrington [32]. The matrix elements are given by ey

2 kdn

lm'30ﬂkdn1-j?lnm (16)

; (2) -

Lon 30 « kdn Ho (kRmn) (17) o

]

where k 1s 2x/), R 1is the distance between the center of the mth and nth ]

11 ;.‘ "‘
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vti' subdivisions of the cylinder surface, d 1is the width of the n-th subdivision,

| '. and H§2)(-) is the Hankel function of the second kind. In order to generate the
) matrix elements efficiently, the Hankel functions are interpolated from a look-
Ei up table. The size of the table 1is proportional to the maximum linear dimension
’. of the scatterer, yet requires much less storage than the N x N matrix it
v replaces.
;i Results for the conducting cylinder example were obtained for problems
ri iavolving 399 x 399 matrices. Matrix equations of this order are beyond the in-
gﬁ core storage capabilities of most modern computers. Figure 1 shows the magni-

tude of the surface current density on a square conducting cylinder at three

frequencies, Similar results can be obtained for large dielectric cylinders

that may, in general, be lossy and inhomogeneous. Figure 2 shows the polariza-

tion current induced inside a lossy dielectric cylinder consisting of over 500

-

cells {34]. We note that van den Berg has applied the conjugate gradient method

to solve a similar problem involving 2500 cells in a dielectric cylinder [11],

E e e oY
£ T
velx,

[12j.

o

It is believed that the iterative method combined with the look-up table

approach will permit many types of scattering problems to be solved for large

ii geometries. The authors have used it for the examples discussed above, and

g{ found the efficiency satisfactory for large—order equations. In one case, an 4

. equation of order 1216 was solved on a Perkin-Elmer 0S-32 computer [34]. 5

gi. However, not all integral equations can be reduced to matrix equations with ]
simple elements; the complexity of the elements is usually directly proportional g
to the sophistication (and accuracy) of the discretization scheme used. As the j

\{;- complexity of each matrix element increases, the efficiency of the process
[ 8

decreases. Yet, even at {ts worst, the method offers an alternative to Gaussian

e elimination for the solution of large moment-method matrix equations.
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3.2. Solution of Periodic Problems Using the FFT

An example of a problem well-suited for solution by the conjugate gra-
dient method is the frequency-selective surface (FSS) shown in Pigure 3.
Frequency—-selective meshes find many applications at optical and infrared wave-
lengths as band pass filters. The geometry is an infinite-periodic extension of
a single rectangular cell, and for plane-wave scattering an integral equation
for the vector components of the current on the metallic portion of the cell can
be derived using Floquet's theorem [35]. The entire rectangular cell can be
discretized via the moment method to yield a vector equation containing scalar
components of the form

M N

Eyy = mzl n21 Jan Ki-m,j-n (18)
Equation (18), written in the space domain, represents a circular discrete con-
volution. The qu of Equation (18) are actually each a double-infinite sum—
mation over the Floquet modes. Equation (18) can be written in the discrete

Fourier transform domain as

~ ~

s = Jag Kop (19)

It may be undesirable to compute KGB by applying the FFT to the Kij’ and as an
alternative, the gaB can be approximated by samples of the coantfnuous Fourier
transform of K, which is usually a simple analytic expression (not a summation)
[36]. This suggests that a significant savings in computation can be realized
by operating in the spectral domain. This entails using the FFT to transform
Jom t° 308’ performing the multiplication indicated in equation (19), and using

the inverse FFT to find E11 from Ec This approach is often used for problems

6.
involving periodic geometries [37), [38].



P T R Y Y N R N T T T O T T T T T AT R
L3 N L AR RS At et A M Sl pilin” RV a S et g dae e Ban Sav Soh Bne st i See Bas S Bad et Sad Tk

CONDUCTING

B /T PLATES
L - -~

CONDUCTING
SHEET

UNIT CELL

DIELECTRIC

E = S 2 s
R R
o 3RS
SRR e

INDUCTIVE FSS

i TOP VIEW

1 <1—DIELECTRIC

e SIDE VIEW

Pigure 3. Frequency selective sgurface.

! 16

.

B RIPE . . . I N o S _ .
'-t.'f. T TRy I A RN ARSI P Oy AT SRR UL AL N RS
aaTa o S N N ‘_-.‘I._'-J-JK.JL-A.):_L-_c‘:‘!‘)‘-"E ’_'"_‘,_l'-'- '.".1;1‘-1_‘....:“_‘“_ .




L ag Rl g - L4 ol Sl N a il et~y - al vl o tndl, Sa B SRR Tal SRl YL R YA ol i e vt Baeiriie R Sl N S e Aihe Sl S St e T et Aar A A b A S 2 e R R N R R N

R
A

——
L‘ “ .
P S )

This type of problem is ideally suited for solution by the conjugate gra-

'
.

dient method because of the low storage requirements imposed by the Ka and the

8
efficliency of the FFT algorithm. The approach permits a wide range of choices

————
e
e

of basis and testing functions in a moment-method formulation as long as the

discretization of the rectangular cell is evenly spaced in both dimensions.

-
¥

':'

However, whereas a conventional moment-method approach i{s limited by the size

S

-
LT,

matrix that must be stored, the conjugate gradient method permits the treatment

of much larger problems. Recently, the conjugate gradient method was used to

) c!
L1,

analyze an FSS with over 4000 unknowns [17].

8

3.3. Problems Which Are Linear Discrete Convolutions

The previous example discussed the use of the conjugate gradient method for

Vo=
Y

periodic geometries. The circular discrete convolutions that arise can be

performed efficiently using the FFT. Certain nonperiodic geometries can be

-:

discretized in such a way that the associated eqﬁationa become linear discrete

convolutions, and these can also be computed with the FFT. In the latter case,

i
T
L

"zero-padding” must be incorporated into the algorithm [39]. Examples of

>
-

problems well-suited to this approach are planar structures and two- and three-

dimensional dielectric bodies.

°
As an 1illustration, consider TE-wave scattering by an imperfectly coan-

2

V)

ducting, or resistively coated planar strip. Following Ray and Mittra (18], the

discretized integral equation can be written as

-
$ -
- E, =~ RJ, -n-gl_n) 3 Cpen (20)
: for the choice of basis functions pictured in Figure 4. Rm is the resistance of
; the m~th strip as defined by Senior [40]. Since (20) contains a discrete con-

. volution, the FFT can be incorporated into a conjugate gradient algorithm to
g& provide an efficient solution. Ray and Mittra [18] have shown that, in addition

17
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to a savings in storage, the conjugate gradient method achieves a savings in
computation time as compared to the Gaussian elimination solution of Equation
(20) [18].

An example of the results for one strip configuration is pictured in Figure
5, following Ray and Mittra [18]. The three-dimensional problem of scattering
from resistive plates has been analyzed using a technique analogous to that pre-
sented for the resistive strip, and in particular, used for plate sizes
requiring over 3000 unknowns [18], [19].

3.4, Use of the FFT in More General Problems

The above examples illustrate several ways in which the conjugate gradient
method can be incorporated into the solution process for large scattering
problems. In every case, the moment-method formulation is adhered to and
extended to treat larger geometries. However, the above examples all suffer
from some limitation. The most general approach is the matrix solution, yet it
may only be practical if the matrix elements are relatively simple. The
FFT-based approaches discussed above are superb for certain restricted
geometries, but aside from planar structures and finite circular cylinders, the
only nonperiodic scatterers which can be treated are penetrable dielectric
bodies. The limitation is due to the discretization process itself; in all the
cases discussed above, the conjugate gradient algorithm was used to solve a
numerical system resulting from an application of the method of moments to the
original problem. The moment method technique is well-understood and very
systematic; however, other discretization schemes may be better suited for use
with the FFT.

An alternative approach to solving scattering problems is based upon a pro-
cedure known primarily by the name "Spectral Iterative Technique” [17], [18],

[34]), [37], [41], [42]. To distinguish this technique, which involves using the

19
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FFT in an iterative procedure, from the techniques discussed above using the FFT
with the conjugate gradient method, we introduce the title "Spectral Iterative”
(SI) to those approaches where a continuous convolution integral is approximated
using the FFT. In the previous examples, the FFT was used to perform discrete
convolutions. In the SI approach, the quantities of interest are sampled over a
regular grid of points. This sampling scheme 1s distinctly different from the
moment-method discretization scheme, and thus should be considered a separate
method. The conjugate gfadient approach discussed in the examples given above
is really nothing more than a way to apply the moment method to larger problems.
The conjugate gradient iterative procedure may also be used as an SI technique,
in which the moment method formulation is avoided in favor of a sampling
discretization that anticipates the use of the FFT. The SI approach was used

in the past with an algorithm based upon an iteration procedure that did not
guarantee convergence. The conjugate gradient SI method does ensure con-
vergence, and thus permits the SI technique to be applied to many additional
scattering problems.

For instance, van den Berg and De Hoop have used the conjugate gradient
method to analyze scattering from a rough interface [13]. Their approach incor-
porated an FFT approximation to a Fourier transform integral, and thus is an SI
technique. The SI approach offers a general method for the treatment of large-
body scatterers, as it appears to have few fundamental limitations as to the
types of problems that can be treated with the FFT. Future work in this area
will produce a systematic way of using the method and analyzing the accuracy of

the results.
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4. DISCUSSION

We have presented the conjugate gradient algorithm and discussed some of

iﬂ its features. Many of the remarks on the attributes and limitations of the

" method are based upon our own observations made when using the method to solve

?: pertinent integral equations. In some cases, our observations may not concur

o with the recommendations of others; for instance, it has been suggested that the

" conjugate gradient method is useful for the solution of very ill-conditioned

:' equations [10] and that it is suited for handling multiple incident fields. :

o However, our findings seem to be. at odds with these suggestions. As the method f
. . ]

; has only recently been applied to problems in electromagnetic scattering, it is i

; expected that the future will provide additional clarification. G

. The advantages of the conjugate gradient method for the solution of large ;

i scattering problems lie primarily in the fact that in many cases no alternatives i

A exist aside from a brute-force Gaussian elimination solution of the moment-

g method matrix using out-of-core storage. For many equations, the conjugate

p gradient method permits the solution of large problems without a corresponding

N need for large blocks of computer memory. The conjugate gradient method may not

E; be the best choice in a given situation; it should be considered an alternmative

- which may or may not be useful depending oun the problem. Needless to say, much

ﬁi work remains in the extension of this technique to general scattering problems.

f-.
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